Skip to main content
Log in

Fabrication of modified TiO2 nanoparticle carbon paste electrode for simultaneous determination of dopamine, uric acid, and l-cysteine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A carbon paste electrode, modified with 2, 2′-[1,7-hepthandiylbis(nitriloethylidyne)]-bis-hydroquinone and TiO2 nanoparticles, was used for the simultaneous determination of dopamine (DA), uric acid (UA), and l-cysteine. The study was carried out by using cyclic voltammetry, chronoamperometry, and square wave voltammetry (SWV) techniques. Some kinetic parameters such as the electron transfer coefficient (α) and heterogeneous rate constant (ks) were also determined for the DA oxidation. A dynamic range of 8.0–1400 μM, with the detection limit of 8.4 × 10−7 M for DA, was obtained using SWV (pH = 7.0). The prepared electrode was successfully applied for the determination of DA, UA, and l-cysteine in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McCreery RL (1991) In: Bard AJ (ed) Electroanalytical chemistry. vol. 17. Dekker, New York, pp 221–374

    Google Scholar 

  2. Durst RA, Baumner AJ, Murray RW, Buck RP, Andrieux CP (1997) Pure Appl Chem 69:1317. doi:10.1351/pac199769061317

    Article  CAS  Google Scholar 

  3. Kutner W, Wang J, L’Her M, Buck RB (1998) Pure Appl Chem 70:1301. doi:10.1351/pac199870061301

    Article  CAS  Google Scholar 

  4. Murray RW, Ewing RW, Durst RA (1987) Anal Chem 59:379A. doi:10.1021/ac00132a001

    Article  CAS  Google Scholar 

  5. Katz E, Willner I, Wang J (2004) Electroanalysis 16:19. doi:10.1002/elan.200302930

    Article  CAS  Google Scholar 

  6. Rao CNR, Müller A, Cheetham AK (2004) The chemistry of nanomaterials, synthesis, properties and applications. Wiley, New York

    Google Scholar 

  7. Wightman RM, May LJ, Michael AC (1988) Anal Chem 60:769A. doi:10.1021/ac00164a001

    Article  CAS  Google Scholar 

  8. Gonon F, Buda M, Cespuglio R, Jouvet M, Pujol JF (1980) Nature 286:902. doi:10.1038/286902a0

    Article  CAS  Google Scholar 

  9. O’Neill RD (1994) A review. Analyst 119:767. doi:10.1039/an9941900767

    Article  Google Scholar 

  10. Salimi A, Mam-Khezri H, Hallaj R (2006) Talanta 70:823. doi:10.1016/j.talanta.2006.02.015

    Article  CAS  Google Scholar 

  11. Bard AJ Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  12. Beitollahi H, Mazloum Ardakani M, Naeimi H, Ganjipour B (2008) J Solid State Electrochem (in press)

  13. Mazloum Ardakani M, Ebrahimi Karami P, Rahimi P, Zare HR, Naeimi H (2007) Electrochim Acta 52:6118. doi:10.1016/j.electacta.2007.03.065

    Article  Google Scholar 

  14. Mazloum Ardakani M, Akrami Z, Kazemian H, Zare HR (2006) J Electroanal Chem 586:31. doi:0.1016/j.jelechem.2005.09.015

    Article  Google Scholar 

  15. Sharp M, Petersson M, Edstrom K (1979) J Electroanal Chem 95:123. doi:10.1016/S0022-0728(79)80227-2

    Article  CAS  Google Scholar 

  16. Laviron E (1979) J Electroanal Chem 101:19. doi:10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  17. Golabi SM, Zare HR (1999) Electroanalysis 11:1293. doi:10.1002/(SICI)1521-4109(199911)11:17<1293::AID-ELAN1293>3.0.CO;2-2

    Article  CAS  Google Scholar 

  18. Raoof J, Ojani R, Ramine M (2007) Electroanalysis 19:597. doi:10.1002/elan.200603760

    Article  CAS  Google Scholar 

  19. Andrieux CP, Savéant JM (1978) J Electroanal Chem 93:163. doi:10.1016/S0022-0728(78)80230-7

    Article  CAS  Google Scholar 

  20. Antoniadou S, Jannakoudakis AD, Theodoridou E (1989) Synth Met 30:295. doi:10.1016/0379-6779(89)90652-8

    Article  CAS  Google Scholar 

  21. Moreno G, Pariente F, Lorenzo E (2000) Anal Chim Acta 420:29. doi:10.1016/S0003-2670(00)01011-4

    Article  CAS  Google Scholar 

  22. Miller JN, Miller JC (2000) Statistics and chemometrics for analytical chemistry, 4th edn. Pearson Education Ltd., Harlow

    Google Scholar 

  23. Shahrokhian S, Zare-Mehrjardi HR (2007) Sens Actuators B Chem 121:530. doi:10.1016/j.snb.2006.04.088

    Article  Google Scholar 

  24. Safavi A, Maleki N, Moradlou O, Tajabadi F (2006) Anal Biochem 359:224. doi:10.1016/j.ab.2006.09.008

    Article  CAS  Google Scholar 

  25. Raoof JB, Ojani R, Rashid-Nadimi S (2005) Electrochim Acta 50:4694. doi:10.1016/j.electacta.2005.03.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Yazd University Research Council, the IUT Research Council, and the Excellence in Sensors for their financial supports to the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mazloum Ardakani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardakani, M.M., Talebi, A., Naeimi, H. et al. Fabrication of modified TiO2 nanoparticle carbon paste electrode for simultaneous determination of dopamine, uric acid, and l-cysteine. J Solid State Electrochem 13, 1433–1440 (2009). https://doi.org/10.1007/s10008-008-0692-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0692-2

Keywords

Navigation